Course Description Form		
Course Code and Name	5221329 3D Game Programming	
Course Semester	Fall-Spring	
Catalog Content	Introduction to Game Programming and Computer Graphics, 3D Computer Graphics Pipeline, Matrix Algebra, OpenGL and WebGL States and Primitives, 2D Viewing, 3D Viewing, Transformations, Color, Materials and Lighting, Texture Mapping, Programmable Pipeline, OpenGL Extensions, Vertex Shaders, Fragment Shaders, Project	
Textbook	OpenGL SuperBible: Comprehensive Tutorial and Reference (5th Edition). Richard S. Wright, Jr., Benjamin Lipchak, Nicholas Haemel	
Supplementary Textbooks	$-\quad$	
Credit	8	
Prerequisites of the Course (Attendance Requirements)	There is no prerequisite or co-requisite for this course.	
Type of the Course	Technical Elective	
Instruction Language	English	
Course Objectives	Understanding the basics of 3D computer graphics. Ability to develop interactive games.	
Course Learning Outcomes	1- The students can produce both theoretical and practical solutions to the problems encountered in 3D Game development. 2- The students can develop a 3D game.	
Instruction Methods	Face to face	
Weekly Schedule	1. Week Introduction to Game Programming and Computer Graphics 2. Week 3D Computer Graphics Pipeline 3. Week Matrix Algebra 4. Week OpenGL and WebGL States and Primitives 5. Week 2D Viewing 6. Week 3D Viewing 7. Week Transformations 8. Week Color, Materials and Lighting 9. Week Texture Mapping 10. Week Programmable Pipeline 11. Week OpenGL Extensions 12. Week Vertex Shaders 13. Week Fragment Shaders 14. Week Project	
Teaching and Learning Methods (These are examples. Please fill which activities you use in the course)	Weekly theoretical course hours Weekly tutorial hours Reading Activities Internet browsing, library work Designing and implementing materials Report preparing Preparing a Presentation Presentations Preparation of Midterm and Midterm Exam Final Exam and Preparation for Final Exam	
Assessment Criteria	Numbers	Total Weighting (\%)
	Midterm Exams $\quad 1$	30
	Assignment	
	Application	
	Projects 1	30
	Practice	
	Quiz	
	Percent of In-term	60

	7	Designs and applies theoretical, experimental and modeling based researches, examines and solves the complex problems encountered in this process.			X
	8	Works effectively in disciplinary and multidisciplinary teams, leads such teams and develops solution approaches in complex situations, works independently and takes responsibility.		X	
	9	Communicates oral and written using a foreign language at least at the level of European Language Portfolio B2.	X		
	10	Conveys the process and results of the studies in written and oral form in a systematic and clear manner in national and international environments within or outside the field.			X
	11	Knows the social, environmental, health, security, legal aspects of engineering applications; project management, and business life X applications and be aware of the constraints of these engineering applications.			
	12	Considers social, scientific and ethical values in the stages of data collection, interpretation and announcement and in all professional activities.	X		
The Course's Lecturer(s) and Contact Informations		Surname: Assist. Prof. Dr. Öner BARUT il address: onerbarut @gazi.edu.tr			

